Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(5-Methyl-3-phenylisoxazol-4-yl)ethanone

Zheng-Feng Xie,^a* Xue-Xia Mo,^a Xue-Li Mo^b and Fang-Ming Liu^c*

^aKey Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, Xinjiang University, Urumqi 830046, People's Republic of China, ^bThe Fifth Middle School of Changji State, Changji 831100, People's Republic of China, and ^cChemistry Department of Hangzhou Teacher College, Hangzhou 310012, People's Republic of China

Correspondence e-mail: xiezhf72@yahoo.com.cn, fmliu859@sohu.com

Received 13 May 2007; accepted 17 May 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.061; wR factor = 0.257; data-to-parameter ratio = 17.6.

In the title compound, $C_{12}H_{11}NO_2$, synthesized by 1,3-dipolar cycloaddition reaction of nitrile oxides with sodium pentane-2,4-dionate, all bond lengths and angles are normal. In the molecule, the isoxazole and phenyl rings make a dihedral angle of 84.8 (1)°.

Related literature

The synthesis of 1-(5-methyl-3-phenylisoxazol-4-yl)ethanone was described by Doyle *et al.* (1963); for the crystal structures of related complexes see Higgins *et al.* (1997).

For related literature, see: Hanson & Mohamed (1997); Lin et al. (1997); Martins et al. (2000).

Experimental

Crystal data

Data collection

Rigaku R-AXIS SPIDER diffractometer Absorption correction: multi-scan (using intensity measurements) (Higashi, 1995) $T_{\rm min} = 0.942, T_{\rm max} = 0.983$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.257$ S = 1.052410 reflections T = 293 (2) K 0.70 × 0.50 × 0.20 mm

10361 measured reflections 2410 independent reflections 1444 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$

137 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.24\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.22\ e\ \text{\AA}^{-3} \end{split}$$

Data collection: *RAPID-AUTO* (Rigaku 2004); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 20562011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2244).

References

- Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Doyle, F. P., Hanson, J. C., Long, A. A. W., Nayler, J. H. C. & Stove, E. R. (1963). J. Chem. Soc. pp. 5838–5845.
- Hanson, R. N. & Mohamed, F. A. (1997). J. Heterocycl. Chem. 34, 345–348. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Higgins, J., Zhou, X. F. & Liu, R. F. (1997). J. Phys. Chem. A, 101, 7231–7235.
- Lin, S. T., Kuo, S. H. & Yang, F. M. (1997). J. Org. Chem. 62, 5229–5231.
- Martins, A. P. M., Flores, F. C. A., Bastos, G. P., Sinhorin, A., Bonacorso, H. G. & Zanatta, N. (2000). *Tetrahedron Lett.* 41, 293–297.
- Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3010 [doi:10.1107/S1600536807024415]

1-(5-Methyl-3-phenylisoxazol-4-yl)ethanone

Z.-F. Xie, X.-X. Mo, X.-L. Mo and F.-M. Liu

Comment

Isoxazole derivatives exhibit anticonvulsant, antibacterial, antiasthmatic, and other pharmacological activities (Lin *et al.*, 1997). Isoxazoles are typically prepared by the reaction of nitrile oxides with alkynes (Hanson & Mohamed, 1997) or olefine. In addition they are synthesized by cyclization of the adducts of alpha, beta-unsaturated ketones (or aldehydes) and hydroxylamines (Martins *et al.*, 2000). In this article, we report here the crystal structure of 1-(5-methyl-3-phenyl-isoxazol -4-yl)ethanone synthesized by 1,3-Dipolar Cycloaddition reaction of nitrile oxides with sodioacetylacetone (Doyle *et al.*, 1963).

Experimental

A solution of alpha-chlorobenzaldoxime(0.02 mol) in methanol was added slowly to a stirred solution of sodioacetylacetone(0.026 mol) at 268–273 K in ice-salt bath. The mixture was stirred for 2 h and allowed to warm to room temperature, then kept on stirring for 2 h. After finished the reaction, the residue was shaken with water(200 ml), filtrated. The solid was crystallized from ethanol and water to give colorless prism crystals (yield 63.8%). *M*.p. 336 k. Analysis, found (calculated for $C_{12}H_{11}NO_2$): C 71.63 (71.61%) H 5.51(5.54%) N 6.96(6.94%). Crystals were grown from a solution of ethanol by slow evaporation.

Refinement

All H atoms were geometrically fixed with C—H = 0.93-0.96 Å, and were treated as riding with $U_{iso}(H) = 1.2-1.5$ Ueq(parent atom).

Figures

A view of the sellipsoids are of arbitrary radii. Figure 2 The p

Figure 1

A view of the molecule structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2 The packing structure of the title compound viewed down the *a* axis.

1-(5-methyl-3-phenylisoxazol-4-yl)ethanone

Crystal data	
C ₁₂ H ₁₁ NO ₂	$F_{000} = 424$
$M_r = 201.22$	$D_{\rm x} = 1.266 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 336 K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 14.090 (3) Å	Cell parameters from 5329 reflections
<i>b</i> = 5.2504 (11) Å	$\theta = 3.3 - 27.5^{\circ}$
c = 14.280 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 92.60 \ (3)^{\circ}$	T = 293 (2) K
$V = 1055.3 (4) \text{ Å}^3$	Prism, colourless
Z = 4	$0.70 \times 0.50 \times 0.20 \text{ mm}$

Data collection

Rigaku R-AXIS SPIDER diffractometer	2410 independent reflections
Radiation source: Rotating Anode	1444 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω oscillation scans	$\theta_{\min} = 4.0^{\circ}$
Absorption correction: multi-scan Higashi (1995)	$h = -18 \rightarrow 18$
$T_{\min} = 0.942, \ T_{\max} = 0.983$	$k = -6 \rightarrow 6$
10361 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.15P)^2 + 0.2275P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.061$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.257$	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.05	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
2410 reflections	Extinction correction: SHELXL
137 parameters	Extinction coefficient: 0.063 (14)

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.25512 (14)	0.1587 (4)	0.82721 (12)	0.0768 (6)
O2	0.46364 (16)	0.6933 (5)	0.89829 (16)	0.0964 (8)
N1	0.19230 (16)	0.2155 (5)	0.89941 (16)	0.0764 (7)
C1	0.1178 (3)	0.6683 (8)	1.0260 (2)	0.1056 (12)
H1	0.1011	0.7383	0.9678	0.127*
C2	0.0734 (3)	0.7530 (11)	1.1046 (3)	0.1268 (16)
H2	0.0286	0.8828	1.0989	0.152*
C3	0.0946 (3)	0.6488 (8)	1.1894 (2)	0.0954 (11)
Н3	0.0626	0.7004	1.2417	0.114*
C4	0.1624 (4)	0.4698 (8)	1.1971 (2)	0.1256 (16)
H4	0.1793	0.4015	1.2556	0.151*
C5	0.2073 (4)	0.3863 (7)	1.1188 (2)	0.1178 (15)
Н5	0.2535	0.2602	1.1250	0.141*
C6	0.18481 (17)	0.4861 (5)	1.03262 (16)	0.0601 (6)
C7	0.23385 (16)	0.3934 (5)	0.94913 (15)	0.0572 (6)
C8	0.32306 (15)	0.4644 (4)	0.91255 (14)	0.0536 (6)
C9	0.39362 (17)	0.6557 (5)	0.94341 (16)	0.0607 (6)
C10	0.3788 (2)	0.8049 (6)	1.0298 (2)	0.0759 (8)
H10C	0.4307	0.9216	1.0404	0.114*
H10B	0.3759	0.6913	1.0823	0.114*
H10A	0.3204	0.8984	1.0226	0.114*
C11	0.33123 (17)	0.3083 (5)	0.83683 (15)	0.0596 (6)
C12	0.4041 (2)	0.2697 (6)	0.76707 (18)	0.0747 (8)
H12C	0.3831	0.1407	0.7232	0.112*
H12B	0.4626	0.2171	0.7984	0.112*
H12A	0.4141	0.4264	0.7342	0.112*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
O1	0.0791 (12)	0.0874 (13)	0.0643 (11)	-0.0131 (10)	0.0068 (9)	-0.0224 (9)
O2	0.0895 (15)	0.1154 (17)	0.0872 (14)	-0.0362 (12)	0.0347 (12)	-0.0201 (12)
N1	0.0676 (13)	0.0920 (16)	0.0700 (14)	-0.0163 (12)	0.0102 (11)	-0.0163 (12)
C1	0.097 (2)	0.149 (3)	0.0723 (18)	0.047 (2)	0.0205 (16)	0.013 (2)
C2	0.100 (3)	0.185 (4)	0.098 (3)	0.049 (3)	0.031 (2)	-0.010 (3)
C3	0.093 (2)	0.114 (3)	0.083 (2)	-0.023 (2)	0.0432 (17)	-0.0238 (18)
C4	0.200 (5)	0.117 (3)	0.0626 (18)	0.023 (3)	0.041 (2)	0.0083 (19)
C5	0.189 (4)	0.109 (3)	0.0579 (16)	0.054 (3)	0.031 (2)	0.0109 (17)
C6	0.0593 (13)	0.0657 (13)	0.0562 (12)	-0.0088 (11)	0.0110 (9)	-0.0029 (10)
C7	0.0600 (13)	0.0618 (13)	0.0495 (11)	-0.0031 (10)	0.0014 (9)	-0.0015 (10)
C8	0.0594 (12)	0.0574 (12)	0.0443 (10)	-0.0003 (9)	0.0039 (8)	0.0016 (9)
C9	0.0608 (13)	0.0638 (13)	0.0580 (13)	-0.0030 (10)	0.0079 (10)	0.0016 (10)

supplementary materials

C10	0.0687 (16)	0.0788 (17)	0.0808 (17)	-0.0105 (13)	0.0092 (13)	-0.0204 (14)
C11	0.0646 (14)	0.0658 (13)	0.0481 (11)	0.0042 (11)	0.0014 (10)	-0.0008 (10)
C12	0.0772 (17)	0.0907 (19)	0.0568 (13)	0.0156 (14)	0.0102 (12)	-0.0067 (13)
Geometric param	neters (Å, °)					
O1—C11		1.331 (3)	C5—1	Н5	0.93	600
O1—N1		1.421 (3)	C6—	C7	1.48	37 (3)
О2—С9		1.219 (3)	С7—	C8	1.43	32 (3)
N1—C7		1.297 (3)	C8—	C11	1.36	66 (3)
C1—C6		1.344 (4)	C8—	С9	1.46	67 (3)
C1—C2		1.383 (5)	С9—	C10	1.48	34 (4)
C1—H1		0.9300	C10–	-H10C	0.96	500
C2—C3		1.350 (6)	C10–	-H10B	0.96	500
С2—Н2		0.9300	C10–	-H10A	0.96	500
C3—C4		1.341 (5)	C11–	-C12	1.47	77 (3)
С3—Н3		0.9300	C12-	-H12C	0.96	500
C4—C5		1.381 (5)	C12-	-H12B	0.96	500
C4—H4		0.9300	C12-	-H12A	0.96	500
С5—С6		1.362 (4)				
C11—O1—N1		109.08 (17)	C8—4	С7—С6	130	.9 (2)
C7—N1—O1		105.53 (19)	C11–	-C8C7	103	.9 (2)
C6—C1—C2		121.0 (3)	C11–	-C8C9	124	.6 (2)
C6—C1—H1		119.5	С7—	С8—С9	131	.5 (2)
C2-C1-H1		119.5	O2—	С9—С8	120	.4 (2)
C3—C2—C1		120.5 (4)	O2—	C9—C10	120	.1 (2)
С3—С2—Н2		119.8	C8—4	C9—C10	119.	.5 (2)
C1—C2—H2		119.8	С9—	С10—Н10С	109	.5
C4—C3—C2		119.1 (3)	С9—	C10—H10B	109	.5
С4—С3—Н3		120.5	H10C	С—С10—Н10В	109	.5
С2—С3—Н3		120.5	С9—	C10—H10A	109	.5
C3—C4—C5		120.4 (4)	H10C	С—С10—Н10А	109	.5
C3—C4—H4		119.8	H10B		109	.5
C5—C4—H4		119.8	01—	C11—C8	109	.8 (2)
C6—C5—C4		120.9 (4)	01—	C11—C12	115.	.5 (2)
C6—C5—H5		119.5	C8—4	C11—C12	134	.6 (2)
C4—C5—H5		119.5	C11–	-C12—H12C	109	.5
C1—C6—C5		118.1 (3)	C11–	-C12—H12B	109	.5
C1—C6—C7		121.8 (2)	H12C	—С12—Н12В	109	.5
С5—С6—С7		120.1 (3)	C11–	-C12—H12A	109	.5
N1—C7—C8		111.7 (2)	H12C	—С12—Н12А	109	.5
N1—C7—C6		117.4 (2)	H12B	—С12—Н12А	109	.5
C11-O1-N1-0	C7	-0.6 (3)	N1—	C7—C8—C11	-0.9	9(3)
C6—C1—C2—C	3	-1.9 (7)	C6—4	C7—C8—C11	178	.0 (2)
C1—C2—C3—C4	4	2.9 (7)	N1—	С7—С8—С9	179	.0 (2)
C2—C3—C4—C	5	-2.5 (7)	C6—4	С7—С8—С9	-2.1	(4)
C3—C4—C5—C	6	1.0 (8)	C11-	-C8C9O2	3.5	(4)
C2—C1—C6—C	5	0.4 (6)	С7—	C8—C9—O2	-17	6.3 (3)
C2—C1—C6—C	7	-179.6 (4)	C11–	-C8-C9-C10	-17	6.9 (2)

supplementary materials

C4—C5—C6—C1	0.1 (7)	C7—C8—C9—C10	3.3 (4)
C4—C5—C6—C7	-179.9 (4)	N1-01-C11-C8	0.1 (3)
O1—N1—C7—C8	0.9 (3)	N1-01-C11-C12	179.3 (2)
01—N1—C7—C6	-178.2 (2)	C7—C8—C11—O1	0.4 (3)
C1-C6-C7-N1	-85.0 (4)	C9—C8—C11—O1	-179.4 (2)
C5-C6-C7-N1	95.1 (4)	C7—C8—C11—C12	-178.6 (3)
C1—C6—C7—C8	96.2 (4)	C9—C8—C11—C12	1.5 (4)
С5—С6—С7—С8	-83.8 (4)		
Hydrogen-bond geometry (A	Å, °)		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
??…?	?	?	?	?

